On continuity of derivations and epimorphisms on some vector-valued group algebras
نویسندگان
چکیده
منابع مشابه
the structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولAMENABILITY OF VECTOR VALUED GROUP ALGEBRAS
The purpose of this article is to develop the notions of amenabilityfor vector valued group algebras. We prove that L1(G, A) is approximatelyweakly amenable where A is a unital separable Banach algebra. We givenecessary and sufficient conditions for the existence of a left invariant meanon L∞(G, A∗), LUC(G, A∗), WAP(G, A∗) and C0(G, A∗).
متن کاملContinuity of Derivations on //»-algebras
We prove that the separating subspace for a derivation on a nonassociative //'-algebra is contained in the annihilator of the algebra. In particular, derivations on nonassociative H* -algebras with zero annihilator are continuous.
متن کاملSome Properties of Vector-valued Lipschitz Algebras
Let $(X,d)$ be a metric space and $Jsubseteq (0,infty)$ be a nonempty set. We study the structure of the arbitrary intersection of vector-valued Lipschitz algebras, and define a special Banach subalgebra of $cap{Lip_gamma (X,E):gammain J}$, where $E$ is a Banach algebra, denoted by $ILip_J (X,E)$. Mainly, we investigate $C-$character amenability of $ILip_J (X,E)$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1997
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700030938